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ABSTRACT

Lane-changing (LC) problem may cause serious accidents or create a painful traffic jam 
at multi-lane roads. Existing LC simulation model was created with some limitations (less 
fitted, without velocity and acceleration profiles, high curvature) by using well known 
trajectory curve such as Hyperbolic Tangent Curve (HTC), Sine-Based Curve (SC), 
Polynomial Curve (PC). In this study, a new parametric curve had been proposed by using 
curvilinear coordinate system and fitted against Next Generation Simulation (NGSIM) real 
dataset. Further, new profiles of velocity and acceleration were designed using the proposed 
LC trajectory curve. The curvature of proposed model was zero-based curvature both at 
LC starting and ending points. This proposed curvature was compared with two models 
such as HTC and SC. The average root-mean-square-error of proposed model decreased 
with 1.84% for left LC and 15.48% for right LC compared to HTC model and 1.74% for 
left LC and 15.60% for right LC compared to SC model. Similarly, the proposed model 
for velocity and acceleration profiles improved significantly from PC model. The proposed 
parametric curve solves the gap and collision points of LC vehicle with a front vehicle and 
rear vehicle at target lane and can be used in real LC path planning. 

Keywords: Acceleration profiles, parametric curve, 
speed, trajectory planning 

INTRODUCTION

Lane Changing Trajectory (LCT) planning 
is an important model for identifying and 
ensuring the safeness in any traffic systems 
where this model helps to predict the gap 
acceptance, and to plan LC dynamical 
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trajectory about the longitudinal and lateral movements (Yang et al., 2018). The trajectory 
planning has been developed from more than two decades. Few simulation models were 
developed for LCT system such as Quintic Bezier Curves (QBC), Spline-Based Curve 
(SBC), non-smooth Dijkstra algorithm and Multi Order Polynomial Curve (MOPC) for 
urban and freeway roads. Testing the simulation model by real trajectory data is required 
for this development, because the model based on simulation data poorly fits in the real 
traffic data (Zhou et al., 2017). 

The QBC is used in LCT planning for shortest-distance and smoothness path, time-
optimal and comfortable journey.  Shen et al. (2017) addressed the trajectory planning based 
on the fifth order QBC for a comfortable journey. They implemented this curve with a few 
mini-mature vehicles in LC scenarios to test comfort measurement. However, their results 
were unrealistic as there was no error testing between the proposed path planning and real 
trajectory planning for longitudinal and lateral path positions. Meanwhile, González et 
al. (2016) and Kawabata et al. (2013) found that although QBC was very smooth, it was 
only applied on unicycle trajectory and agreed that high-degree QBC lost flexibility at the 
trajectory. 

The parameters of MOPC are described by acceleration, speed and position constraints. 
Sometimes, inexperienced driving causes uncomfortable journey at the time of LC. Wang 
and Zheng (2013) provided a simulation model for LCT planning using MOPC without 
testing the with real vehicle trajectory. A few researches only assumed that the acceleration 
and velocity at the starting and ending points were zeros to generate the PC-based lateral 
trajectory model (Resende & Nashashibi, 2010; Wang & Zheng, 2013; You et al., 2015; 
Ntousakis et al., 2016; Chebly et al., 2017). 

Heil et al. (2016) developed the PC-based LCT planning and found the computational 
cost by using maximum acceleration and overshooting behaviour. Connors and Elkaim 
(2007) had successfully overcome collision points during LC. They used the trajectory 
planning based on SBC to overcome any obstacle point. SBC is very important for 
smoothness at the corner between two straight lines with limitation that the continuous 
velocity was not possible at this corner point (Sanchez-Reyes & Chacón, 2018). Therefore, 
the most of LCT model developed using the MOPC model, but most of the research still 
only assumed its velocity and acceleration profiles at the starting and ending points were 
zeros, in which these assumptions were unrealistic. Wang et al. (2018) explored another 
lateral trajectory path based on SC and a longitudinal trajectory line. Their trajectory model 
still assumed zeros for lateral velocity and acceleration. 

 Zhou et al. (2017),  modified a reference angle-based trajectory planning model using 
HTC. The curvature and fitted values were compared with PC and SBC, in which modified 
HTC performed better than other two models. They suggested that the reference angle 
could only be determined by vehicle traveling data recorders. So, data extracted from still 
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video camera cannot be employed in reference angle adopted trajectory model whereas 
this type of data is very popular (Wan et al. 2020). Yang et al. (2018) modified the MPOC 
model in order to determine LCT curve and found that the starting and ending points 
were non- zeros as assumed previously by other researchers. However, they assumed the 
vehicle at ending point was parallel to the target lane. If a vehicle is parallel to the target 
lane, then the lateral velocity should be zero as non-lateral movements. Therefore, that 
assumption is also unrealistic. 

Katrakazas et al., (2015) discovered that there were two important types of findings 
for LCT problems

1.	 The best geometric trajectory was necessary for LC vehicle. It indicates that the 
curvature at every point on the curve was to be as small as possible, besides the 
curvatures at starting and ending points were nearly zero for comfortable journey. 

2.	 The realistic vehicle dynamical system was very important for path planning. The 
vehicle LC time versus position, vehicle LC time versus velocity and vehicle LC 
time versus acceleration should be validated by real trajectory. 

In this study, a new parametric trajectory curve, velocity and acceleration profiles 
were proposed by using curvilinear motion planning. The proposed trajectory curve was 
fitted with NGSIM data. Further, the curvature of the trajectory curve was calculated and 
compared with HTC and SC models. Furthermore, the velocity and acceleration profiles 
were compared with PC model.

METHODS

The Curvilinear Motion Planning (Rectangular Coordinates) 

Let X, Y  be the coordinate frame where the horizontal direction is represented by the 
x-axis and the vertical direction is represented by the y-axis. The rectangular coordinate 
system represents the vehicle’s longitudinal and lateral positions, respectively, 𝑋 𝑡

𝑌(𝑡)

 𝑃(𝑡) = [𝑋(𝑡),𝑌(𝑡)]

𝑃 𝑡

 and 
𝑋 𝑡

𝑌(𝑡)

 𝑃(𝑡) = [𝑋(𝑡),𝑌(𝑡)]

𝑃 𝑡

. So, the position of the vehicle, at any given time t, is 

𝑋 𝑡

𝑌(𝑡)

 𝑃(𝑡) = [𝑋(𝑡),𝑌(𝑡)]

𝑃 𝑡

, where   
is the position of the cartesian system and t is the time during LC.

Trajectory Curve 

The parametric function for LCT planning is identified due to the nature of the function, 
which is continuous, low curvature; and because they ensure easy computation and time-
saving trajectories. The parameters of this functions represent the positioned coordinates 
of the LCT with respect to time. But for the aggressive driver, parameters’ values must 
be changed quickly to reach the target point. Further, we propose a lateral velocity and 
acceleration profiles for vehicle motion.  Equation 1 and 2 represent for longitudinal 
movement and lateral movement respectively to identify velocity and acceleration: 



Md. Mijanoor Rahman, Mohd. Tahir Ismail, Norhashidah Awang and Majid Khan Majahar Ali

220 Pertanika J. Sci. & Technol. 29 (1): 217 - 232 (2021)

Longitudinal position (Y. Y. Wang, Pan, Liu & Feng, 2018),

𝑋 𝑡 = 𝑢0t + 𝐿0,   for    𝑇𝑜𝑟𝑖𝑔𝑖𝑛 ≤ t ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡

𝑌 𝑡 = 𝐿𝑌𝐷
2

tanh 𝑡1 − 𝑡 + 𝐿𝑌𝐼𝐷, for  𝑇𝑜𝑟𝑖𝑔𝑖𝑛 ≤ t ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡

				    (1)

Lateral position of proposed curve,𝑋 𝑡 = 𝑢0t + 𝐿0,   for    𝑇𝑜𝑟𝑖𝑔𝑖𝑛 ≤ t ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡

𝑌 𝑡 = 𝐿𝑌𝐷
2

tanh 𝑡1 − 𝑡 + 𝐿𝑌𝐼𝐷, for  𝑇𝑜𝑟𝑖𝑔𝑖𝑛 ≤ t ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡			   (2)

where, uo is initial velocity, Lo is initial longitudinal position during LC, Torigin   and 
Ttarget  are starting time and ending time of LC respectively. In Equation 2, the parameter 
LYD represents to the total lateral displacement during LC wherein it is positive for Left 
LC (LLC) and negative for Right LC (RLC). The range of total lateral displacement,LYID 
is [2.8,4] for LLC and [–4,–2.8] for RLC scenarios. LYID is ordinate of middle position 
of LC starting and ending points and t 1 is the such time that vehicle arrives at middle 
position of starting and ending positions. Where, 𝜎 is a weighted parameter represents to 
be estimated. Figure 1 depicts the parameters movement on RLC and LLC scenario using 
Equations 1 and 2. These parametric functions are fitted the LLC and RLC in order to find 
LCT in lane width, middle position of LC starting and ending points are initially used, 
when a driver needs to change the lane. Figures 2 and 3 are time versus RLC and LLC 
positions respectively using Equation 2 where the vehicle lateral position is decreasing 
for RLC, and increasing for LLC. 

Velocity Profile 

The longitudinal and the lateral positions are represented by Equation 1 and 2 with respect 
to time respectively. The lateral displacement per unit time was found by taking the 
derivative with respect to time, then the lateral velocity of the vehicle comes out. Similarly, 
longitudinal velocity was calculated by differentiation with respect to time.

The vehicle velocity vector is parallel to the tangent line on the position vector of 
the parametric path, where the lateral velocity is zero and the longitudinal velocity is 
linear motion before LC. When LC starts, the value of lateral velocity increases, but the 
longitudinal speed remains in the previous speed. However, for the motion control and 
path planning of the vehicle, this velocity profile is suitable to overcome the smoothness 
and curvature limitation. 

If a LC starts from zero second and finishes at eighth second, then time interval is [0,8] 
seconds, but some aggressive vehicles are very fast, and their LC time interval is [0,6] 
seconds (Zhou et al., 2017). The LC processing starts from time, t = 0, and the velocity 
function is increasing until vehicles arrive at the middle position of two lanes. After that, 
velocity decreases for merging with the target lane. Since, the lateral velocity is not very 
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Figure 1. RLC and LLC traffic scenarios

Figure 2. Parametric RLC path planning for lateral 
position

Figure 3. Parametric LLC path planning for lateral 
position

fast, the total LC velocity mostly depends on the longitudinal velocity for arriving at target 
lane in time. The longitudinal and lateral velocities shown in Equation 3 and 4 respectively 
where the Equation 1 and 2 are differentiated with respect to t.

Longitudinal velocity,

𝑣𝑋 𝑡 =  𝑢0, for    𝑇𝑜𝑟𝑖𝑔𝑖𝑛 ≤ t ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡  				    (3) 

Lateral velocity,

𝑣𝑌 𝑡 = −𝜎𝐿𝑌𝐷
2

 𝑠𝑒𝑐ℎ2𝜎 𝑡1 − 𝑡 for   𝑇𝑜𝑟𝑖𝑔𝑖𝑛 ≤ t ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡			   (4)
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Figure 4 represents the longitudinal and lateral velocities by using Equations 3 and 
4 where longitudinal velocity is parallel to the horizontal line, and lateral velocity is a 
smooth curve during LC.

Acceleration Profile

A comfortable journey should adopt low lateral acceleration according to Katrakazas et al. 
(2015) work. Since, this study uses the smooth lateral velocity and constant longitudinal 
velocity based on Equation 3 and 4, respectively. The longitudinal and lateral accelerations 
presented in Equations 5 and 6 respectively by using the differentiation of Equations 3 
and 4 during LC.

Longitudinal acceleration,

𝑎𝑋 𝑡 =  0 for    𝑇𝑜𝑟𝑖𝑔𝑖𝑛 ≤ t ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 					     (5)

Lateral acceleration,

𝑎𝑌 𝑡 = 𝜎2𝐿𝑌𝐷𝑠𝑒𝑐ℎ2𝜎 𝑡1− 𝑡  tanh 𝜎 𝑡1 − 𝑡 for    𝑇𝑜𝑟𝑖𝑔𝑖𝑛 ≤ t ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡	 (6)

Figure 5 represents the longitudinal and lateral acceleration where longitudinal 
acceleration is zero according to Equation 5, and lateral acceleration is a smooth curve 
using Equation 6.

DATA PROCESSING

Dong et al. (2017) had estimated the starting and ending points of LC with less standard 
deviation and limited mean error from US 101, NGSIM dataset. This data set included the 
longitudinal and lateral position of LC vehicle with other surrounding vehicles, such as a 

Figure 4. Longitudinal and lateral velocities of the 
parametric curve LC times

Figure 5. Longitudinal and lateral accelerations of 
parametric curve during LC
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front vehicle, lag vehicle on the current lane and front vehicle, rear vehicle on the target 
lane. This dataset included groups of LC vehicle with surrounding. Every group had five 
vehicles, such as a front vehicle, lag vehicle on the current lane and front vehicle, rear 
vehicle on the target lane. The study used 200 LC vehicles to fit the proposed LCT model 
during LC.

Every vehicle in a group had 20 s longitudinal and lateral velocity and longitudinal and 
lateral acceleration profiles time series microscopic data where the data resolution was 0.1 
second (Li et al., 2016). This dataset also included the LC starting and ending position of 
LC vehicle, and the movement position of other surrounding vehicles. The LC duration 
depended on the starting and ending points of the trajectory data. Before starting point, 
the longitudinal and lateral positions were before LC data, and after the ending point, the 
positioning data were after LC data. During LC, for getting the average longitudinal velocity 
and lateral velocity of every vehicle, the total longitudinal and lateral displacement was 
divided by the total time. Similarly, longitudinal acceleration and lateral acceleration were 
found from longitudinal velocity and lateral velocity respectively.

RESULTS AND DISCUSSION

As mentioned previously, one of the limitations of reference angle, the value only can 
be collected from vehicle traveling data recorders, but not from still video camera as in 
NGSIM. So,  Zhou et al. (2017) adopted parameters (average velocity, longitudinal distance 
and reference angle) were modified using coordinate geometrical system, as shown in 
Appendix A. In addition, another SC model is proposed by Wang et al. (2018) also shown 
in Appendix B. Both of HTC and SC were used to compare the efficiency of the proposed 
parametric curve.  

Equations 1 and 2 present a longitudinal and lateral positions of the LC. By using 
parameters’ values-LYD and LYID,  t 1, u0 and L0, the proposed curve was fitted to 200 LC 
vehicles’ trajectories. The only parameter’s value, 𝜎 was tested by using initial value 0 to 
1 because it was a weighted parameter. So, this study found the more fitted value of 𝜎 is 
0.56. In addition, the fitted curves and real trajectory curves were compared. 

Curvature Estimation 

Equation 7 (Léger, 1999) was applied for determining the curvature value of proposed 
parametric curve, and compared to  HTC and SC curves.

Curvature, 𝑘 =
𝑦′′

1 + 𝑦′2 3
2�

						      (7)

where, 
𝑘 =

𝑦′′
1 + 𝑦′2 3

2� and 
𝑘 =

𝑦′′
1 + 𝑦′2 3

2�

 are first and second differentiations respectively of lateral displacement, 

𝑘 =
𝑦′′

1 + 𝑦′2 3
2�

 with respect to longitudinal displacement, x by using Equations 1 and 2. The maximum 
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values of the curvature were not more than 0.006 for LLC and 0.009 for RLC shown in 
Figure 6 and Figure 7. These curvature values were nearly zeros at the starting and ending 
points of the curve. Therefore, the proposed curve provided the comfortable journey 
according to the small curvatures at the starting and ending points during LC as a challenge 
of Katrakazas et al. (2015) study. 

The curvature of the proposed curve is shown in Figures 6 and Figure 7 by using 
Equation 7, and these curvatures are lower than the HTC and SC proposed curvatures. 
However, by using the LCT in the parametric curve, the driver not only determines the 
vehicle path, but also follows the longitudinal and lateral velocity and acceleration profiles 
with respect to their desired dynamics and gaps at the target lane. Many other information 
can also be collected by using the prediction curve besides the proposed model can generate 
different trajectories which follow the aggressive and non-aggressive drivers by changing 
the values of the initial parameters of the prediction curve.

Figure 6. The curvature for LLC Figure 7. The curvature for RLC

Trajectory Curve Validation 

For validation test, the total of 200 LC real trajectory data (100 LLC and 100 RLC data) 
were randomly taken from 200 groups of vehicles LC scenarios for NGSIM data. The 
parameters’ values of prediction trajectory curve were used to adjust with the real trajectory 
vehicle position. Table 1 shows that the average Root Mean Square Error (RMSE) values 
where the intervals of total lateral distance of RLC and LLC were [3.3, 4.4] meters and [2.7, 
5.4] meters respectively. The middle longitudinal point and the middle lateral point were 
situated in the middle coordinate of the trajectory curve. The middle coordinate changed 
for every trajectory curve, because the LC position of every trajectory was different. But 
the ranges of total longitudinal LC distance were [25, 85] meters for RLC and [30, 93] 
meters for LLC real data. The total LC time depended on aggressive driving or regular 
driving. Here, the ranges of total LC time are [5.5, 8.9] seconds for RLC and [4.8, 8.8] 
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seconds for LLC appeared in the dataset. These dynamical parameters of the curve were 
collected from real dataset to fit this curve with real trajectory planning. 

The total 100 LLC and 100 RLC vehicles data were tested by using proposed trajectory 
model, HTC model and SC model. The HTC and SC models used the Equation 8 and 9 
respectively where Equation 8 was adopted in Appendix A, and Equation 9 was adopted 
in Appendix B. The average RMSE values of used models are presented in Table 1 for 
comparison of the proposed model. The average RMSE of proposed parametric curve for 
LLC and RLC were 0.2795 and 0.2179 respectively, where proposed model improved 
1.84% from HTC, and 1.74% from SC for LLC, and 15.48% from HTC, and 15.60% 
from SC. 

Figure 8 shows the lateral displacements of RLC vehicles along our proposed curve, 
HTC, SC and real trajectories of NGSIM data sets. The real trajectory of a vehicle 
(randomly selected from 100 groups of vehicles) for RLC are represented. Figure 9 shows 
the longitudinal movements according to Equation 1 and the same vehicle longitudinal 
movements. This study used the Wang et al. (2018) proposed longitudinal movements 
line due to use the determination of the curvature, velocity and acceleration.  Figure 8 
clearly shows that the lateral displacements of parametric curve are similar to that of the 
real trajectory curve, and better than the HTC and SC due to movement of the proposed 
curve and real trajectory.

Table 1
The parametric curve fitting RMSE value using 200 vehicles data

Proposed 
(LLC) HTC (LLC) SC (LLC) Proposed 

(RLC) HTC (RLC) SC (RLC)

Average RMSE (m) 0.2795 0.2848 0.2845 0.1719 0.2033 0.2036
Improved proposed 

model
From
1.84%

From
1.74%

From
15.48%

From
15.60%

Figure 7. The curvature for RLC

Figure 8. Lateral movement of RLC Figure 9. Longitudinal movement of RLC  
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Similarly, Figure 10 represents the lateral displacements of our proposed curve, HTC, 
SC and real trajectory of a vehicle (randomly selected from 100 groups of vehicles) for 
LLC. Figure 11 shows the Wang et al. (2018) proposed longitudinal movements and real 
vehicle longitudinal movements. Figure 10 also clearly shows that the lateral displacements 
of parametric curve are similar to that of the real trajectory curve, and better than the HTC 
and SC due to similar reason as mentioned above for Figure 8. This research does not 
consider any modification model for longitudinal movements.

Velocity and Acceleration Profiles Validation

Recently, Ali et al. (2019), Gu et al. (2019), and Li et al. (2016) applied the data smoothing 
process for using NGSIM data on other traffic researches. The velocity and acceleration data 
cannot be applied directly in any model because they have many noises. In addition, these 
two trajectories were derived from positional information (Thiemann et al., 2008). In this 
reason, the above-mentioned studies employed the data smoothing technique. Therefore, 
for validation testing of velocity and acceleration profiles, this study applied the spline-
based interpolation by using MATLAB Curve Fitting Package. This similar procedure was 
applied for trajectory model testing by Wang et al. (2018). 

The Equation 4 represents the simulated lateral velocity, and real lateral movements 
generated the real lateral velocity wherein every LC vehicle has velocity and acceleration 
trajectories. To test the validation, this study compared the simulated and real lateral 
velocities and accelerations by using RMSE value. The validation tests considered 100 
LLC vehicles and 100 RLC vehicles. These trajectories were formed in a same time frame. 
Therefore, every LC vehicle adopted the RMSE value whereas Table 2 shows the average 
RMSE values in which proposed velocity and acceleration models were better than PC-
based velocity and acceleration models.  

Figure 10.  Lateral movement of LLC Figure 11. Longitudinal movement of LLC
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The test results for our proposed model revealed that respectively, the average RMSE 
of velocity and acceleration were 0.218 and 0.314 for LLC, and 0.148 and 0.238 for RLC. 
Respectively, the average RMSE for PC model of velocity and acceleration were 0.236 and 
0.362 for LLC, and 0.188 and 0.302 for RLC. Therefore, the proposed model improved 
from PC model 7.75% (velocity profile) and 13.28% (acceleration profile) for LLC, and 
21.43% (velocity profile) and 21.13% (acceleration profile) for RLC.

Table 2 
Comparative validation test results for velocity and acceleration profiles

Model RMSE(LLC) 100 vehicles RMSE (RLC) 100 vehicles
Profile Velocity Acceleration Velocity Acceleration
Proposed 0.218 0.314 0.148 0.238
PC 0.236 0.362 0.188 0.302
Improved proposed model (%) 7.75% 13.28% 21.43% 21.13%

The second challenge of Katrakazas et al. (2015) adopted in introduction of this study 
was to test the validation against real data set. Table 2 shows the validation test results using 
real data and comparisons with PC-based velocity and acceleration models. This section 
also shows the graphical comparison among real data, proposed simulation model, and 
PC model for velocity and acceleration profiles. Therefore, Figure 12 (LLC) and Figure 
13 (RLC) show the velocity profiles of proposed lateral movements using Equations 4, 11 
(Appendix C) and real vehicle data. 

Our proposed velocity was smoothly increasing before the middle of the lane and 
smoothly decreasing after the middle of the lane as shown in Figure 12 (LLC) and Figure 
13 (RLC). The dashed line represents proposed model velocity, dotted line represents PC 
model velocity while solid line represents real velocity (Figures 12 and 13). So, the proposed 
velocity profile fits more than PC model with real data. In addition, the longitudinal velocity 
is almost constant velocity because of linear movements, a similar result showed by Chebly 
et al. (2017). Figures 12 and 13 show that the velocities at starting and ending points were 
not always zeros for real vehicle, whereas PC model considered zeros at these points. This 
similar statement was proven by Yang et al. (2018).

Further, Figure 14 (LLC) and Figure 15 (RLC), show the lateral accelerations of 
proposed lateral movements of Equations 6, 12 (Appendix C) and real vehicle. Although, 
the longitudinal acceleration of prediction movements was zero shown in Equation 5 due 
to the constant longitudinal velocity as like Chebly et al. (2017).  So, the acceleration of 
simulated vehicle depended on only lateral acceleration where the lateral acceleration of our 
proposed model was smooth and flexible. The accelerations at starting and ending points 
were non-zeros, although PC model considered zeros at these points shown in Figures 14 
and 15. Therefore, the proposed model of velocity and acceleration profiles referred  better 
than PC model as fitted with real trajectory.



Md. Mijanoor Rahman, Mohd. Tahir Ismail, Norhashidah Awang and Majid Khan Majahar Ali

228 Pertanika J. Sci. & Technol. 29 (1): 217 - 232 (2021)

CONCLUSION

The dynamical systems such as position movement, lateral velocity, lateral acceleration 
and curvature can be simplified by adopting the LCT planning model. Katrakazas et 
al. (2015) explored the challenges such as more fitted geometric curve, the continuous 
and zero-based curvatures at the initial position and ending position, and more realistic 
velocity and acceleration profiles. The curvatures of the proposed curve for LLC and RLC 
are lower than the HTC and SC curvatures. In addition, the curvature at LC starting and 
ending positions are very small and near zeros. Although, some previous LCT models 
were developed and tested by simulated vehicles, but our model is tested with 200 real 
vehicles, and shown the significant improvement. The validation test results show that the 
average RMSE of proposed trajectory model decreases with 1.84% for LLC and 15.48% 
for RLC compared to HTC model and 1.74% for LLC and 15.60% for RLC compared to 
SC model. Furthermore, the proposed model improved from PC model 7.75% (velocity 

Figure 12 Velocity profiles Figure 13 Velocity profiles

Figure 14. Acceleration profiles Figure 15. Acceleration profiles



New Parametric Function-Based Dynamic LCT Planning and Simulation Model

229Pertanika J. Sci. & Technol. 29 (1): 217 - 232 (2021)

profile) and 13.28% (acceleration profile) for LLC, and 21.43% (velocity profile) and 
21.13% (acceleration profile) for RLC. Therefore, the proposed model adopted longitudinal 
and lateral position trajectory and velocity and acceleration profiles overcome challenges of 
Katrakazas et al. (2015) work. The lateral trajectory model includes a weighted parameter 
as aggressive driving behavior tested manually in some fixed values. Therefore, future 
research should purpose findings optimum parameters by using more real trajectory data.
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APPENDIX

Hyperbolic Tangent curve-based path planning approach:

The HTC model was proposed by Zhou et al. (2017) converted in Equation 8 using mathematical transformation. 
The lateral movements of vehicle represented by Yz(t) with respect to time t.

Yz t = Sf
2 tanh σ

ld
vd�

ld
2vd

− t + Tf 			   (8)

where, Sf is a scale factor, σ  is driver aggressiveness, ld is total longitudinal distance, Vd average velocity 
and Tf is a translation factor during LC action, where parameters are generated from dynamical trajectories 
except σ . This research tested four values (3, 4.3, 4.5, 7) of σ  according to Zhou et al. (2017) suggestion. The 
optimized parameter value is 4.5. 

Sine curve-based path planning approach:

Wang et al. (2018) proposed Equation 9 of lateral movements Yw(t), where t is time.

Yw t = Tl
t

t1
−

Tl
2π sin 2π

t
t1

 + Tf 			   (9)

where, T1 is total lateral displacement, t1 is total LC time and Tf is a translation factor, where all parameters 
are produced from dynamical trajectories. 

Polynomial curve-based path planning approach:

Chebly et al. (2017) proposed Equation 10 of lateral movements Yp(t), where t is time.

Yp t = 10Tl
t3

t13 − 15Tl
t4

t14 + 6Tl
t5

t15  + Tf 		  (10)

where, T1 is total lateral displacement, t1 is total LC time and Tf is a translation factor, where all parameters 
are created from dynamical trajectories. 

The lateral velocity profile is derived from Equation 10 shown in Equation 11:

Vp t = 30Tl
t2

t13 − 60Tl
t3

t14 + 30Tl
t4

t15 			   (11)

The lateral acceleration profile is shown in Equation 12: (Chebly et al., 2017)

Ap t = 60Tl
t

t13 − 180Tl
t2

t14 + 150Tl
t3

t15 		  (12)


